
Journal of Computational Physics 206 (2005) 208–226

www.elsevier.com/locate/jcp
Selective edge removal for unstructured grids
with Cartesian cores

Rainald Löhner a,*, Hong Luo b, Joseph D. Baum b

a Department of Science and Technology, School of Computational Sciences, M.S. 4C7, George Mason University, 4400

University Drive, Fairfax, VA 22030-4444, USA
b Advanced Technology Group, Science Applications International Corp., McLean, VA 22102, USA

Received 28 May 2004; received in revised form 26 November 2004; accepted 26 November 2004
Abstract

Several rules for redistributing geometric edge-coefficient obtained for grids of linear elements derived from the sub-

division of rectangles, cubes or prisms are presented. By redistributing the geometric edge-coefficient, no work is carried

out on approximately half of all the edges of such grids. The redistribution rule for triangles obtained from rectangles is

generalized to arbitrary situations in 3-D, and implemented in a typical 3-D edge-based flow solver. The results indicate

that without degradation of accuracy, CPU requirements can be cut considerably for typical large-scale grids. This

allows a seamless integration of unstructured grids near boundaries with efficient Cartesian grids in the core regions

of the domain.

� 2005 Elsevier Inc. All rights reserved.

Keywords: CFD; FEM; Cartesian grids; Edge-based solvers
1. Introduction

Many applications with complex geometries require large regions of uniform grids. Examples are wave

propagation (acoustics, electromagnetics) and large-eddy simulation of flows. It can be argued that in these

regions, where more than 90% of all elements reside, a uniform, Cartesian grid represents the optimal
discretization. Furthermore, due to the uniformity of the mesh, the traditional 27-point stencil obtained

for trilinear hexahedral elements may be replaced by the more efficient 7-point stencil while still retaining

second order accuracy in space. Traditional Cartesian grid solvers require special treatment of stencils or
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.11.034

* Corresponding author. Tel.: +1 703 993 1990.

E-mail address: rlohner@gmu.edu (R. Löhner).

mailto:rlohner@gmu.edu 


R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 209
volumes close to boundaries [4,20,11,2,12,5,10]. This is not the case for solvers based on unstructured grids,

which have found widespread use for complex geometries. A seamless combination of traditional unstruc-

tured grids close to boundaries (comprising a small percentage of the total mesh) with highly efficient Carte-

sian grids in the core regions would thus seem very promising. We remark, in passing, that many

unstructured grid generators utilize point distributions from Cartesian [3] or adaptive Cartesian grids
[25,9] for the regions where isotropic elements are required, and that for electromagnetics the combination

of unstructured grids neas boundaries and structured grids in the core regions has been found to be advan-

tageous [6].

For problems with boundary layers, semi-structured grids obtained by lofting surface triangulations are

commonly used [15,22,24]. A number of researchers have reported the degradation of accuracy that occurs

when solving compressible flow problems using traditional finite volume schemes in regions where elements

are highly stretched [1,27,7,14]. The reason for this degradation is that the normals of the finite volume

faces associated with the edges of the mesh are misaligned with the direction of the edge. This can be seen
from Fig. 1, where a rectangular triangle, typical of boundary layer grids, is depicted. The normal of face

D,G belonging to edge A,B, which is aligned with the x-direction, will tend to be in the y-direction for hx/

hy � 1.

The solution advocated so far for grids of this type is to construct finite volumes using the circumcenter/

sphere of the points comprising the triangle/tetrahedron instead of the geometric center. The normals of

these so-called containment duals tend to be well aligned with their corresponding edges, and remove

the dependency of edges that are diagonal. Fig. 1 shows this effect for a stretched triangle. The success

of finite volume schemes based on the containment dual concept for highly stretched elements has led to
the search for an equivalent modification of edge-based schemes stemming from finite element discretiza-

tions. Attempts have been made to modify quadrature rules or shape-functions [27]. Some of these schemes

are extremely elaborate.

The decoupling of diagonal connections, which can be interpreted as a selective edge removal, is not

limited to stretched elements. For any mesh with rectangular triangles this type of edge removal via contain-

ment duals is possible. Given that most of the CPU-intensive operations occur at the edge-level (fluxes, lim-

iting, Riemann-solvers, etc.), removal of edges without degradation of accuracy should have an immediate

benefit.
This has led to the following overall procedure:

� Generate as large a portion of the volume as possible with adaptive Cartesian grids (for the inviscid/wave

propagation domain) or semi-structured grids that are split into tetrahedra.

� Fill in the remaining regions close to boundaries with an unstructured grid of tetrahedra.

� Build all geometrical coefficients as if an unstructured grid is used.

� Where possible, selectively remove the edges.
h_x h_x

BD

E

A

C

F

G

BD

E

G

A

C

F
h_y h_y

Fig. 1. Triangular element.



210 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
The expected savings as compared to a traditional unstructured grid are approximately a factor of 2, i.e.,

not spectacular but worth the effort. As will be shown below, these savings are indeed realized. It may be

argued that special solvers should be used in the interior, Cartesian (or tensor-product) region. Such an

approach, which has been proposed by Pflaum [21], precludes the use of adaptive Cartesian grids, and

requires the development and maintenance of two separate solvers. The aim of the present work was to

modify the general, unstructured grid solver as little as possible, so that a seamless transition from fully

unstructured to special-purpose grids could be accomplished.
The remainder of the paper is organized as follows: Sections 2 and 3 present the redistribution schemes

for edges of triangles and tetrahedra. Section 4 treats the general case. Section 5 discusses the generation of

adaptive Cartesian cores. Examples are given in Section 6, and some conclusions and an outlook for future

work complete the paper in Section 7.
2. Redistribution of weights: triangles

2.1. Advective coefficients

Consider again the element shown in Fig. 1. For any given point i, the discretization of a conservation

law of the form
u; t þr � f ¼ 0 ð1Þ
will result in a sum of fluxes
Miûi;t ¼ ri ¼ Cijf̂ ij; ð2Þ
where f̂ ij denotes a consistent numerical flux, e.g. that obtained from an approximate Riemann [8] solver

and Cij is a geometric coefficient (typically an area normal) associated with the edge ij [13,17]. The sum over

the edges ij can be split into a sum of element contributions
ri ¼
X
el

riel ¼
X
el

Cij
elf̂ ij: ð3Þ
With reference to Fig. 1, we see that for point A, the edge-contributions are:
rAel ¼ CAB
el f̂ AB þ CAC

el f̂ AC: ð4Þ
Going from a median dual to a containment dual finite volume representation may now be interpreted in a

variety of ways:

(a) Move the centroid G to the circumcenter F and recompute all finite volumes.

(b) Add the face (edge) G, F to D, G and remove the dependency A–C.

(c) In Eq. (4), assume that uC � uB, and use only uB.

The end result is the same:
rAel ¼ ½CAB
el þ CAC

el �f̂ AB; ð5Þ

i.e., the edge-coefficient from edge A–C is simply added to edge A–B. In the same manner, for point C, the

contribution of edge AC must be accounted for. As before, this can be interpreted in a variety of ways:



R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 211
(a) Move the centroid G to the circumcenter F and recompute all finite volumes.

(b) Add the face (edge) G, F to E, G and remove the dependency A–C.

(c) Assume that uA � uB, and use only uB.

The end result is the same:
rCel ¼ ½CCA
el þ CCB

el �f̂ CB; ð6Þ

i.e., the edge-coefficient from edge A–C is simply added to edge B–C.

2.2. Mass-matrix (areas)

A change in the finite volume surrounding a node must also be accounted for in the mass (or area) asso-

ciated to the node. From Fig. 2, one can see that the change is not negligible. From geometrical consider-
ations, the area of sub-triangle D, G, F is given by
AD;G;F ¼ 1
12
AA;B;C: ð7Þ
Therefore, the removal of edge A, C has to be accounted for by:

� adding 2
12
AA;B;C to node B (node opposite to edge being modified);

� subtracting 1
12
AA;B;C from nodes A, C, respectively (nodes of edge being modified).

2.3. Change indicator

The next question to be answered is when to switch the weights. The simplest form to determine an

obtuse angle is via the coefficients obtained for the Laplacian operator on an edge. The edge coefficients

are given by
Lij ¼
Z
Xel

rNi � rNj dX: ð8Þ
This coefficient will be negative for angles smaller than 90� and positive for angles larger than 90�. It there-
fore seems natural to invoke the redistribution of weights whenever Lij P 0.
A
3

A
3

A
3

A
4

A
2

A
4

D

E
F

G

D

E

G

F

Fig. 2. Triangular element: mass/area associated to nodes.



212 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
2.4. Rules for triangles

From the preceding arguments, we can summarize the following weight switching rules for triangles:

(a) Build element coefficients and nodal masses as before (linear finite elements, median dual finite
volume).

(b) DO: For each edge ij of the element:

IF: Laplacian coefficient Lij P 0:

– Add advection coefficients Cij
k to the other 2 edges;

– Set advection coefficients Cij
k ¼ 0;

– Add A/6 to node opposite to edge ij;

– Subtract A/12 from nodes i, j;
ENDIF

ENDDO
3. Redistribution of weights: tetrahedra

3.1. Advective coefficients

Consider the tetrahedra shown in Fig. 3. Unlike the 2-D case, the redistribution of advective coefficients
can involve a number of other edges.

Assume, without loss of generality, that the advective coefficients of edge 1 with nodes A, B have been

marked for removal. One could either add these coefficients by treating the adjacent faces as triangles. This

implies adding a fraction n of the coefficients to edges 2, 3, and the remaining fraction 1 � n to edges 4, 5.

On the other hand, one of the edges in each of these pairs may have been marked for removal as well. In this

case, one has to take a more complex path, adding the coefficients to edges 2, 6, 4 (in case either of edges 3, 5

have been marked for removal) or to edges 3, 6, 5 (in case either of edges 2, 4 have been marked for re-

moval). It is important to note that a closed path through edges between the end-nodes has to be followed
when adding the coefficients of the edge being removed to other edges. Otherwise, the balance of fluxes

surrounding a node will not be maintained.
A

B

C

D

1

2
3

4
6

5

Fig. 3. Tetrahedral element.



R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 213
3.2. Mass-matrix (volumes)

As in the 2-D case, a change in the finite volume surrounding a node must also be accounted for in the

mass (or volume) associated to the node. From Fig. 4, one can see that the change is not negligible. Denot-

ing by V the volume of the element, the removal of edge A, B has to be accounted for by:

� Subtracting V/16 from nodes A, B respectively (nodes of edge being modified).

� For option 1 (no addition to edge 6):

– adding nV/8 to node C;

– adding ((1 � n)V)/8 to node D.

� For option 2 (addition to edge 6):

– adding V/16 to node C;

– adding V/16 to node D.

3.3. Change indicator

As in the 2-D case, the simplest form to determine an obtuse angle is via the coefficients obtained for

the Laplacian operator on an edge. This coefficient will be negative for angles smaller than 90� and po-

sitive for angles larger than 90�. It therefore seems natural to invoke the redistribution of weights when-

ever Lij P 0.
3.4. Rules for tetrahedra

From the preceding arguments, we can summarize the following weight switching rules for tetrahedra:

(a) Build element coefficients and nodal masses as before (linear finite elements, median dual finite

volume);

(b) DO: For each edge ij of the element:
IF: Laplacian coefficient Lij P 0;

– Obtain Laplacian coefficients for edges adjacent to end-nodes i, j;

– IF: all these Laplacian coefficients are negative:

– Determine redistribution weight n;
– Add nCij

k to first contiguous edge pair;

– Add ð1� nÞCij
k second contiguous edge pair;

– Add nV/8 to common node of 1st edge pair;

– Add ((1 � n)V)/8 to common node of 2nd edge pair;

– ELSE:

– Determine continuous path with negative Laplacians;

– Add Cij
k to edges comprising the path;

– Add V/16 to intermediate nodes of the path;
– ENDIF

– IF: coefficients were added:

– Set advection coefficients Cij
k ¼ 0;

– Subtract V/16 from nodes i, j;

– ENDIF
ENDIF

ENDDO



V
4 V

4

V
4

V
4

V

V

V8
8

8

5V
 8

Fig. 4. Tetrahedral element: mass/volume associated to nodes.

214 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
4. The general case

Consider a mesh of cubes split into 5 tetrahedra per cube, as shown in Fig. 5(a).

The circumcenters of the outer tetrahedra lie at the center of the cube, i.e., outside the tetrahedra. More-

over, the Laplacian coefficients of the large tetrahedron at the center do not vanish. This implies that for

subdivisions of this kind the rules derived above will not lead to a substantial reduction of edges. This has

led to the search for a more general redistribution procedure. After several tries, the following triangle rule,

summarized in Fig. 6, was found to work well:

(a) Build element coefficients and nodal masses as before (linear finite elements, median dual finite
volume);

(b) DO: For each edge ij of the element:

IF: A rectangle of neighbouring edges lying in a plane can be constructed:

– Add half of the advection coefficients Cij
k to the other 4 edges;

– Set advection coefficients Cij
k ¼ 0;
ENDIF

ENDDO
(a) 1:5 (b) 1:6

Fig. 5. Subdivision of cube into tetrahedra.



1

2

3

4

Fig. 6. General rectangle configuration.

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 215
The lumped mass matrix is obtained by evaluating the gradient of a known function (e.g. u = x + y + z).

Given the known gradient values, the best lumped mass coefficient can be derived.
5. Generation of adaptive Cartesian cores

The generation of Cartesian cores for general domains is shown in Fig. 7.

In a first step the surface of the computational domain is discretized with triangles of a size as prescribed

by the user. In the present case, this is accomplished through a combination of background grids, sources

and element size linked to CAD entities [17]. In a second step a Cartesian mesh that has the element size of

the largest element desired in the volume is superimposed on the volume. This mesh is then adaptively

refined locally so as to obtain the element size distribution prescribed by the user. Note that adaptive refine-

ment only works well with the subdivision of cubes into 6 tetrahedra (Fig. 5(b)). As points are only added
along existing edges, mesh refinement does not add any new points inside the cubes subdivided into 5 tet-

rahedra (Fig. 5(a)). Once the adaptive Cartesian mesh is obtained, the elements that are outside the domain

to be gridded are removed. This yields an additional list of faces, which, together with the surface discret-

ization, form the initial front of the as yet ungridded portion of the domain. In the present case an advanc-

ing front technique [16] is used to mesh this portion of the domain. The capability to mesh Cartesian cores

only requires a small change within an advancing front technique. The Cartesian core portion is basically

an independent module whose main role is to supply an additional list of triangles for the initial front.

Meshing the Cartesian core is extremely fast, so that overall CPU requirements for large grids decrease con-
siderably. A preliminary version of the present procedure (without the adaptive refinement of the Cartesian

core) was proposed in [6]. Other techniques that generate unstructured grids with Cartesian cores are all

those that use point distributions from regular Cartesian grids [3,19] or Octrees [25,9].
6. Examples

The selective edge removal option was implemented in FEFLO, a general purpose edge-based finite
element flow solver using linear elements [18], and was tested on a variety of examples, of which four

are included here. We remark from the outset that the main aim of the comparison is the quality of



(c) Retain Valid Part

(a) Initial Surface Discretization

(d) Complete Mesh

(b) Cartesian (Adaptive) Grid

Fig. 7. Mesh generation with adaptive Cartesian core.

216 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
the results as well as the relative speed of typical unstructured grids vs. those with Cartesian cores. The

first case is a steady inviscid compressible flow case, the second a transient inviscid compressible flow

case, and the third a steady inviscid incompressible flow case. For each of these cases the relative

CPU requirements of point and edge-loops is different, so that the merits of grids with Cartesian cores

and selective edge removal can be seen over a spectrum of applications. These runs were performed on a

PC with an Intel-P4 processor running at 2.1 GHz with 1 Gbyte of RAM using the Intel Fortran com-

piler under Red Hat Linux OS.
For each case, three different grids were used:

� a typical unstructured grid (Grid 1);

� an unstructured grid with Cartesian core obtained by subdivision of cubes into 5 tetrahedra (Grid 2);

� an unstructured grid with Cartesian core obtained by subdivision of cubes into 6 tetrahedra (Grid 3).

The main statistics of these grids were recorded and are listed in Tables 1–3. We denote by nelem,

necrt, nedge, nacte the nr. of elements, the nr. of elements in the Cartesian core, the nr. of edges
and the nr. of active edges, respectively. The CPU requirements are in seconds. The grids with Cartesian



Table 2

Grid statistics for sod tube

Grid nelem necrt nedge nacte ntime CPU

1 173,140 0 217,142 217,142 937 340

2U 117,314 62,720 154,015 154,015 777 213

2C 117,314 62,720 154,015 113,183 775 170

3U 130,228 75,264 166,927 166,927 751 216

3C 130,228 75,264 166,927 113,551 749 165

Table 3

Grid statistics for bump in channel

Grid nelem necrt nedge nacte ntime CPU

1 819,792 0 984,994 984,994 150 371

2U 503,268 391,990 627,240 627,240 150 230

2C 503,268 391,990 627,240 385,003 150 199

3U 582,455 469,992 706,470 706,470 150 256

3C 582,455 469,992 706,470 385,908 150 203

Table 1

Grid statistics for wedge

Grid nelem necrt nedge nacte CPU

1 958,951 0 1,148,313 1,148,313 2685

2U 600,821 460,015 743,795 743,795 1831

2C 600,821 460,015 743,795 460,716 1331

3U 694,285 552,018 837,405 837,405 1960

3C 694,285 552,018 837,405 462,327 1360

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 217
cores were run with the usual solver (all edges active), as well as with deactivation of edges switched on. We

are aware that the definition of element size can be a contentious issue. We have taken the traditional

notion, i.e., an element of size h is given by:

� a tetrahedral element whose edges are of length h;

� a hexahedral element whose edges are of length h.

It is clear that for a specified element size h, a portion of space will contain more edges and points if
filled by a mesh of tetrahedra than hexahedra. This fact should be taken into consideration when com-

paring the results obtained. The same applies to the allowable timestep of explicit timemarching

schemes: for a specified element size h the allowable timestep of unstructured grids is smaller than that

of an equivalent Cartesian grid. Whether the increased number of edges (and smaller allowable time-

step) of tetrahedral meshes translates into higher accuracy is also a matter of debate which we do

not feel qualified to answer.

The fourth case considers the space shuttle ascend configuration, and is typical of production runs with

complex geometries. This larger case was run on an SGI O3900 using 16 processors in shared memory
mode. It was included to show the versatility of the techniques proposed.



Fig. 8. (a) Problem definition for wedge. (b)–(d) Triangulation of cut plane z = 0.0. (e) Mach-Number contours on surface (Cases 2U,

2C). (f)–(j) Mach-Number in cut plane z = 0.0.

218 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226



Fig. 8 (continued)

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 219
6.1. Flow past supersonic wedge

The first case considered is the supersonic flow past a wedge in a channel. The overall dimensions and

boundary conditions are shown in Fig. 8(a). The incoming Mach-number isMa1 = 2.0. The mesh is of uni-

form size, as can be seen from Fig. 8(b)–(d). This allows the use of cube subdivisions into 5 and 6 tetrahe-

dra. The Euler equations were solved using the approximate Riemann solver of Roe [23], gradient

reconstruction and van Albada limiting [8] on the conserved variables. The solution was advanced in time

using a 3-stage Runge–Kutta scheme with a Courant-nr. of C = 1.0 for 600 steps. Local timesteps and resid-
ual smoothing were used to accelerate the convergence to steady state for this problem. Grid statistics and

timings have been summarized in Table 1. As one can see, the timings are proportional to the number of

active edges. This is to be expected, as most of the CPU-intensive operations (limiting, approximate Rie-

mann solver) are carried out in edge-loops. In fact, this effect could have been accentuated by shifting to

a more costly Riemann solver and/or limiting on characteristic variables.

Fig. 8(e)–(j) compare the Mach-number contours obtained for the different grids and solver combina-

tions. The immediate conclusion is that the contours look very similar, and it becomes difficult to discern

a clear �best solution�. This would make the case for grids with Cartesian cores and deactivation, as for these
the CPU requirements are considerably lower.

6.2. Sod shock tube problem

This well known testcase [26] was chosen to see if the transition from the outer unstructured grid to the

inner Cartesian core would present problems. The domain was taken to be: 100 · 5 · 5, and the initial con-

ditions are the usual ones: q = 1.0, p = 1.0 for x < 50 and q = 0.1, p = 0.1 for x P 50. The solver used was



Fig. 8 (continued)

220 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226



Fig. 9. (a)–(c) Triangulation of cut plane z = 0.0. (d)–(h) Density in cut plane z = 0.0 at time t = 20.0.

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 221
the same as in the previous example. The solution was run to a time of t = 20.0. As before, three grids were

generated and run, and their statistics are listed in Table 2. Note that the number of timesteps required for

the grids with Cartesian cores is noticeable smaller than for grid 1. We have observed this behaviour (i.e.,

larger allowable timesteps for grids with Cartesian cores) for several other problems as well. Fig. 9(a)–(c)

shows the triangulations obtained by cutting the mesh in the plane z = 0.0. The different grid types can be

discerned clearly. Fig. 9(d)–(h) shows 100 density contours in the plane z = 0.0 at time t = 20.0.

The differences, though discernable, are small, except for the case 3U, which shows a marked bias for the

contact discontinuity. It is remarkable that the case 3C, i.e., with the diagonal edges switched off, does not
show this bias.

6.3. Bump in channel

This third testcase considers incompressible flow. The overall dimensions and boundary conditions are

shown in Fig. 10(a). The incompressible Euler equations were solved using a projection scheme [18]. The



Fig. 10. (a) Problem definition for bump; (b)–(d) triangulation of cut plane z = 0.0; (e)–(i) pressure in cut plane z = 0.0.

222 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
advective fluxes, which are integrated explicitly, are built using upwind bias, gradient reconstruction and

van Albada limiting [8]. A divergence-free flow is enforced by solving a pressure-Poisson equation at each

timestep. Again, three grids were generated and run, and their statistics are listed in Table 3. The timings in
this case are not as favourable as those for the compressible solver. This is expected, as a large percentage of

the overall CPU time is spent in the solution of the Poisson problem, where the work per edge is relatively

low. This results in a higher percentage of CPU work in point-loops. Given that the number of points stays

constant whether the diagonal edges of Cartesian cores are active or deactive, the gains from deactivation

are more modest.

Of course, it may be argued that for the Poisson problem very efficient multigrid solvers are available.

But that would imply two separate solvers, something impractical for large-scale codes. Fig. 10(b)–(d)

shows the triangulations obtained by cutting the mesh in the plane z = 0.0. The different grid types can
be discerned clearly. Fig. 10(e)–(i) shows 50 pressure contours in the plane z = 0.0. As before, the immediate

conclusion is that the contours look very similar, making it difficult to discern a clear �best solution�. This
again makes a strong case for grids with Cartesian cores and deactivation, as for these the CPU require-

ments are reduced considerably.

6.4. Shuttle ascend configuration

This fourth case considers the space shuttle ascend configuration, and is typical of production runs
with complex geometries. The overall geometry is shown in Fig. 11(a). Fig. 11(b)–(e) shows the surface

discretization used, as well as the triangulations of two planar cuts along the shuttle and a zoom in

the region below the wing. One can clearly see the adaptively refined Cartesian cores of the flow

domain, as well as the transition to an unstructured grid near the surface. The mesh statistics have been

compiled in Table 4. Note that the reduction in active edges is still considerable for this complex

geometry case. The Euler equations were solved using the approximate Riemann solver of Roe [23], gra-



Fig. 10 (continued)

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 223
dient reconstruction and van Albada limiting [8]. The solution was advanced in time using a 3-stage

Runge–Kutta scheme with a Courant-nr. of C = 1.0 for 600 steps. Local timesteps and residual

smoothing were used to accelerate the convergence to steady state for this problem. This larger case

was run on an SGI O3900 using 16 processors in shared memory mode. The surface pressure obtained

for an incoming Mach-number of Ma1 = 2.0 and angle of attack a = 0� is shown in Fig. 11(f).
7. Conclusions and outlook

Several rules for redistributing geometric edge-coefficients obtained for grids of linear elements derived

from the subdivision of rectangles, cubes or prisms were presented. By redistributing the geometric edge-

coefficients, no work is carried out on approximately half of all the edges of such grids. The redistribution

rule for triangles obtained from rectangles was generalized to arbitrary situations in 3-D, and implemented

in a typical 3-D edge-based flow solver. The results indicate that without degradation of accuracy, CPU
requirements can be cut by half for grids with a large percentage of elements in the Cartesian core. For



Fig. 11. (a) Shuttle ascend configuration; (b) surface discretization; (c) triangulation of planar cut 1; (d) triangulation of planar cut 2;

(e) detail under wing; (f) surface pressure.

224 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
large-scale grids, this percentage can easily exceed 90%. This allows a seamless integration of unstructured

grids near boundaries with efficient Cartesian grids in the core regions of the domain. A factor of two may

not seem much in light of the fact that the number of points and edges in any 3-D mesh can be doubled by



Table 4

Grid statistics for shuttle ascend configuration

Grid nelem necrt nedge nacte CPU

U 14,253,494 0 17,049,048 17,049,048 5640

C 12,439,995 5,357,014 14,920,442 11,266,645 4310

R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226 225
reducing the mesh size by a mere 25%, but if it can be accomplished without major changes to a code it may

be worth the effort.

Having established the viability of the proposed procedure, there is ample room for improvement. For

example, grouping edges according to coordinate directions would eliminate redundant operations during

gradient calculations by 60%.

Future work will consider further optimization and generalization of all procedures outlined in the

paper.
Acknowledgments

This work was partially supported by DTRA. Dr. Darren Rice and Dr. Young Sohn served as technical

monitors.
References

[1] M. Aftosmis, D. Gaitone, T.S. Taivares, On the accuracy, stability and monotonicity of various reconstruction algorithms for

unstructured meshes, AIAA-94-0415, 1994.

[2] M.J. Aftosmis, M.J. Berger, G. Adomavicius, A parallel multilevel method for adaptively refined Cartesian grids with embedded

boundaries, AIAA-00-0808, 2000.

[3] T.J. Baker, Three-dimensional mesh generation by triangulation of arbitrary point sets, AIAA-CP-87-1124, in: Eighth CFD

Conference, Hawaii, 1987.

[4] D.K. Clarke, H.A. Hassan, M.D. Salas, Euler calculations for multielement airfoils using Cartesian grids, AIAA-85-0291,

1985.

[5] A. Dadone, B. Grossman, An immersed boundary methodology for inviscid flows on Cartesian grids, AIAA-02-1059, 2002.

[6] E. Darve, R. Lohner, Advanced structured–unstructured solver for electromagnetic scattering from multimaterial objects, AIAA-

97-0863, 1997.

[7] A. Haselbacher, J.J. McGuirk, G.J. Page, Finite-volume discretization aspects for viscous flows for mixed unstructured meshes,

AIAA J. 37 (2) (1999) 177–184.

[8] C. Hirsch, Numerical Computation of Internal and External Flow, Wiley, New York, 1991.

[9] Y. Kallinderis, S. Ward, Prismatic grid generation with an efficient algebraic method for aircraft configurations, AIAA-92-2721,

1992.

[10] D.J. Kirshman, F. Liu, Cartesian grid solution of the Euler equations using a gridless boundary condition treatment, AIAA-03-

3974, 2003.

[11] A.M. Landsberg, J.P. Boris, The virtual cell embedding method: a simple approach for gridding complex geometries, AIAA-97-

1982, 1997.

[12] R.J. LeVeque, D. Calhoun, Cartesian grid methods for fluid flow in complex geometries, in: L.J. Fauci, S. Gueron (Eds.),

Computational Modeling in Biological Fluid Dynamics, IMA Volumes in Mathematics and its Applications, vol. 124, Springer-

Verlag, Berlin, 2001, pp. 117–143.

[13] H. Luo, J.D. Baum, R. Löhner, Edge-based finite element scheme for the Euler equations, AIAA J. 32 (6) (1994) 1183–1190.

[14] H. Luo, D. Sharov, J.D. Baum, R. Löhner, On the computation of compressible turbulent flows on unstructured grids, Int. J.

CFD 14 (2001) 253–270.

[15] R. Löhner, Matching semi-structured and unstructured grids for Navier–Stokes calculations, AIAA-93-3348-CP, 1993.

[16] R. Löhner, Extensions and improvements of the advancing front grid generation technique, Comm. Num. Meth. Eng. 12 (1996)

683–702.



226 R. Löhner et al. / Journal of Computational Physics 206 (2005) 208–226
[17] R. Löhner, Applied CFD techniques, Wiley, New York, 2001.

[18] R. Löhner, Chi Yang, J.R. Cebral, O. Soto, F. Camelli, J. Waltz, Improving the speed and accuracy of projection-type

incompressible flow solvers, AIAA-03-3991-CP, 2003.

[19] J.E. Melton, M.J. Berger, M.J. Aftosmis, 3-D applications of a Cartesian grid Euler method, AIAA-93-0853-CP, 1993.

[20] R.B. Pember, J.B. Bell, P. Colella, W.Y. Crutchfield, M.L. Welcome, An adaptive Cartesian grid method for unsteady

compressible flow in irregular regions, J. Comput. Phys. 120 (1995) 278.

[21] C. Pflaum, Semi-unstructured grids, Computing 67 (2) (2001) 141–166.

[22] S. Pirzadeh, Viscous unstructured three-dimensional grids by the advancing-layers method, AIAA-94-0417, 1994.

[23] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43 (1981) 357–372.

[24] D. Sharov, H. Luo, J.D. Baum, R. Löhner, Unstructured Navier–Stokes grid generation at corners and ridges, Int. J. Num. Meth.

Fluid 43 (2003) 717–728.

[25] M.S. Shepard, M.K. Georges, Automatic three-dimensional mesh generation by the finite octree technique, Int. J. Num. Meth.

Eng. 32 (1991) 709–749.

[26] G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27

(1978) 1–31.

[27] C. Viozat, C. Held, K. Mer, A. Dervieux, On vertex-centered unstructured finite-volume methods for stretched anisotropic

triangulations, INRIA Rep. de Recherche 3464 (1998).


	Selective edge removal for unstructured grids with Cartesian cores
	Introduction
	Redistribution of weights: triangles
	Advective coefficients
	Mass-matrix (areas)
	Change indicator
	Rules for triangles

	Redistribution of weights: tetrahedra
	Advective coefficients
	Mass-matrix (volumes)
	Change indicator
	Rules for tetrahedra

	The general case
	Generation of adaptive Cartesian cores
	Examples
	Flow past supersonic wedge
	Sod shock tube problem
	Bump in channel
	Shuttle ascend configuration

	Conclusions and outlook
	Acknowledgments
	References


